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Notation

Notations refer to chapters 1 to 3.

A Amplitude

A0 Anti-symmetric Lamb wave fundamental mode

D, D Layer interface matrix (section 3.1.2), distance (section 3.3.2)
d Thickness

E Young’s modulus

E,. Maximum (or small strain) Young’s modulus

E* Complex dynamic modulus

E; Storage modulus (elastic component)

E, Loss modulus (viscous component)

e Void ratio
f Frequency, Hz

G Shear modulus

Gax Maximum (or small strain) shear modulus

Gy Maximum (or small strain) shear modulus

i N

K Constant (Eq. 54, section 3.2.2)

k, k Wave number

n Ratio (Vs/Vp) (Eq. 45, section 3.1.3), constant (Eq. 54, section 3.2.2)
P Period

S System matrix

s Ratio between Vs and Vi (Eq. 45, section 3.1.3)

SO Symmetric Lamb wave fundamental mode

t Time

u,u Displacement

14 Wave propagation velocity (speed)

Vp Compressional wave velocity

VP plate Quasi-longitudinal wave velocity in plates

Von Phase velocity

Vr Rayleigh wave velocity

Vs Shear wave velocity

X, X Position

o Compressional wave velocity (section 3.1.1-3.1.3), constant (section 3.1.4)
& plate Quasi-longitudinal wave velocity in plates

ar Shift factor

p Shear wave velocity (section 3.1.1-3.1.3), constant (section 3.1.4)
Ag Phase difference

Ax Distance increment

& Strain

Poisson’s ratio

VI



0 Phase angle of complex E-modulus

A Wavelength, Lamé constant (section 3.1.1)

Y7, Lamé constant

Yo, Density

@ Helmholtz scalar potential (section 3.1.2), Phase angle (section 3.3.1-3.3.3)
o Stress

O Mean stress

oy Mean stress

0] Frequency, rad/s

v Helmholtz vector potential

Abbreviations

CSW Continuous Surface Wave

FFT Fast Fourier Transform

FWD Falling Weight Deflectometer

MASW Multichannel Analysis of Surface Waves
MSOR Multichannel Simulation with One Receiver
NDT Non Destructive Testing

PI Plasticity Index

PSAS Portable Seismic Acquisition System
SASW Spectral Analysis of Surface Waves
TRB Transportation Research Board
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Abstract

A novel approach for surface wave testing of pavements is presented. It is a non-
destructive testing (NDT) technique that can be used to obtain the thickness and stiffness
properties of the different layers in a pavement. With this method structural properties of
the pavement can be mapped as a function of time and space, providing a valuable tool in
pavement design and management. The technical development is based on a theoretical
study of wave propagation in pavement structures and on the reported difficulties
experienced with existing methods. A computer based data acquisition system and
program for evaluation of layer properties have been developed.

From the theoretical study on wave propagation in pavement structures, it is concluded
that the nature of wave propagation has been oversimplified in previous studies. Results
show that the measurable wave field at the surface of a pavement structure is dominated
by leaky quasi-Lamb waves in the first and second layer. The fundamental anti-
symmetric mode of vibration is the dominating mode generated in the stiff top layer. This
mode drives the complete system and continuity across the boundaries generates higher
order modes in the embedded second layer. The interaction of leaky Lamb waves in the
first two layers results in large variations in the excitability and the attenuation, so that
only the waves corresponding to certain portions of the dispersion curves are measurable
at the pavement surface. These portions of dispersion curves (mode branches) are critical
for a refined NDT technique for pavements.

To resolve the different mode branches it is necessary to record the complete wave field
on the pavement surface. In this study the multichannel data acquisition method is
replaced by multichannel simulation with one receiver (MSOR). This method uses only
one accelerometer-receiver and a light hammer-source, to generate a synthetic receiver
array. The recorded data is automatically and objectively transformed to a phase velocity
spectrum through the multichannel analysis of surface waves (MASW) processing
scheme.

The top layer thickness, and stiffness properties are obtained automatically in the field by
a Lamb wave analysis of the measured phase velocity spectrum. The inversion of deeper
embedded layers is based on the full phase velocity spectrum. The main benefit from the
developed inversion procedure is that the raw field data can be automatically processed
and inverted without any subjective user input to identify discrete dispersion curves. The
viscoelastic properties of the asphalt layer are included to produce the asphalt stiffness as
a function of frequency, a mastercurve.

In this study the presented NDT technique is applied to pavements and concrete
structures. However, generic findings here may also be useful in other fields. Possible
applications are; ultrasonic testing of coated materials and sandwich structures, surface
wave soil site characterization, and medical applications.
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1 Introduction

1 Introduction

1.1 Background

Surface waves are stress waves traveling along the free surface of a material. Most of the
energy in these waves is confined to the close vicinity of the surface, similar to waves
propagating on the surface of water. The velocity of wave propagation is dependent on
the elastic properties of the affected medium. This principle is used in this study, to
estimate the stiffness and thickness of the different layers in a pavement construction.
With an efficient NDT technique structural properties can be mapped as a function of
time and space providing a valuable tool in pavement design and management.

Today the demand for accurate and efficient NDT techniques is greater than ever.
Pavements are an important part of the worlds transportation infrastructure and
consequently play a significant role in its economy. The annual investment of funds to
construct and maintain a viable road system is enormous. The optimum use of these
funds is a challenge, which demands the best technology available. The state of the art of
pavement design has been very empirical, with trial and error as basis for the decisions.
This process does not lend itself to optimization of the financial resources. However,
today pavement design is progressively moving from empirical to analytical methods.
Analytical methods are the standard engineering procedure for design and analysis of
most civil engineering constructions. Theoretical stresses and displacements are
calculated from material properties and analyzed in order to predict the final performance
of a construction. To successfully implement any analytical pavement design procedure it
is essential to develop tools that can measure material properties at each depth in the
field, in-situ. With such tools pavement material properties can be verified in the field
and compared to the required material properties. The most important material properties
are those related to the stiffness of the materials, for example Young’s modulus (E-
modulus). A higher £-modulus value results in less deformation (strain) for a given load
(stress). Consequently there is a need to develop improved NDT techniques for pavement
applications. A successful and efficient NDT device for pavements can save money spent
on the pavement design and maintenance.

The most widespread NDT method for pavements is the Falling Weight Deflectometer
(FWD) (Huang, 1993). The FWD test is based on deflection measurements at the surface
resulting from a given dynamic load. This method provides a good estimate of the actual
non-linear response of the complete pavement construction at relatively large strain levels
(Ullidtz, 1998). Unfortunately, the E-modulus is a complicated function of both stress
and strain level under this load situation, and it is therefore difficult to obtain
fundamental material properties from this type of test. Wave propagation methods affect
the materials in their linear elastic region and provide material properties that are not
affected by non-linear properties. For example, the E-modulus of different materials in
different pavement constructions can be compared under the exact same loading
condition by using wave propagation based methods. The main result from both
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deflection and wave propagation methods is a stiffness modulus as a function of depth
profile, see Figure 1.

Stiffness modulus
(or seismic velocity)

Depth

A\ 4

Figure 1. The final result from surface wave or deflection based testing of pavements is a stiffness
modulus profile of the test section.

The fundamental principle of using sound “to see” has been successfully utilized in many
fields, ranging from medical applications to global seismology. For example, the crust of
the earth has been characterized by analyzing surface waves generated from earthquakes.
However, surface wave testing of pavements has proved to be a challenging task. The
fundamental difficulties encountered can be traced back to the fundamental nature of
wave propagation in layered media where the stiffness decreases with depth (such as a
pavement system). Sezawa (1938) was first to report on the anomalous behavior of
surface waves in this type of layer setting, and his speculative conclusions revealed some
of the difficulties to come. From his office at the Earthquake Research Institute in Tokyo,
Sezawa (1938) wrote about the possible existence of surface waves in this type of
medium:

“...the idea of the probable existence of such waves occurred to me about ten years ago
when I was studying the dispersion of Rayleigh-waves, having even gone as far as to
present a few results of the investigation at one of the meetings of the Institute, yet owing
to there being certain uncertainties about my numerical calculations, I refrained from
publishing any part of it.”

Professor Gerald Picket at the University of Wisconsin, USA, studied the work finally
published by Sezawa and proposed to use surface waves for NDT of pavements (Picket,
1945). In the view of the author, the work presented by his student Richard Vidale, still
holds as the finest publication on surface wave testing of pavements (Vidale, 1964). The
fundamental difficulties that can be encountered in surface wave testing of pavements
were identified by Jones (1962) and Vidale (1964). However, without the availability of
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modern computers it was impossible to reveal the complete phenomena of surface wave
propagation in pavement systems. Therefore, the problem statement by Vidale (1964)
still holds as the problem statement for the theoretical part of the present work:

“Given such a system, it is desired to know what effect the material properties of the
layers will have upon the phase velocities measured at the surface, so that from these
measurements the properties and depth of each layer may be inferred.”

1.2 Objectives

The main objective with this study is to develop an improved non-destructive testing
(NDT) technique for pavements utilizing surface waves. This project was initiated with
the aim of using seismic measurements for the generation of input parameters in
analytical pavement design.

1.3 Methods

This work is based on both reported and experienced (Ryden, 1999) difficulties with
existing surface wave methods for NDT of pavements. The progress and developments
within this context has been carried out through a combination of field experiments and
numerical modeling.

1.4 Limitations

This thesis is focused on the development of a method for surface wave testing of
pavements. Extensive evaluation of the method under many different conditions remains
to be conducted. Although more than 100 data sets have been collected during the
development, only a few detailed case studies are presented in this thesis. The presented
technique is based solely on phase velocity measurements. The analysis and data
processing is restricted to phase velocities and there is no analysis of damping properties.
No other related measurement techniques such as the Impact Echo or Impulse Response
method have been studied or utilized.
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2 Summary of papers

2 Summary of papers

The included papers reflect the work in a chronological order. Paper I presents the early
field experiments and results with the developed hardware and software components. The
fundamental approach of using the complete phase velocity spectrum instead of discrete
dispersion curves is outlined. In Paper II the proposed method is applied to non-
destructive testing of an old concrete bridge. Paper III presents a detailed theoretical
study of the Lamb wave approximation used in Paper I and II. In Paper IV the theoretical
study is extended to a three-layer system representing a more realistic pavement
structure. This paper reveals some of the previously unexplained phenomena of wave
propagation in pavement structures. The results from Paper I-IV have been used to
develop an inversion procedure utilizing the complete phase velocity spectrum, which is
described in Paper V.

Paper I: Multimodal approach to seismic pavement testing

In this paper a new approach to non-destructive seismic pavement testing is presented.
The final version of the measurement system, field set up, and data processing technique
is described. Much of the early work in this project was spent on the literature review
along with experimental measurements on pavements and concrete slabs. Many ideas and
prototypes were disregarded, and the main findings from that period have been
summarized in this paper. It is concluded that the nature of wave propagation along the
surface of a pavement structure has been oversimplified in earlier techniques. At high
frequencies (1-30 kHz) the wavefield is dominated by multiple modes of guided waves
following the main trend of Lamb waves in the stiff top layer. At lower frequencies (50-
1000 Hz) several branches of dispersion curves are observed in the phase velocity
spectrum. Results are verified with both synthetic and real data. At this point, a complete
understanding and description of the visible branches at low frequencies was not
available and this unexplained phenomenon served as a motivation for further studies.

Paper II: Lamb wave analysis for non-destructive testing of concrete plate
structures

Inspired by the results from Paper I, the Lamb wave approximation was tested on an old
concrete bridge in Malmoe, Sweden. Measurements were conducted on the two supports
of the concrete bridge. The thickness and elastic constants could be evaluated directly in
the field. Results from the seismic field test showed good agreement with results obtained
from more expensive tests based on core drillings. The paper is included in the thesis
because it also contains a practical description of how to calculate theoretical Lamb wave
dispersion curves, a parametric study, and the fundamentals about Lamb waves in a free
plate. The nature of Lamb wave propagation plays a major part in the overall
understanding of wave propagation in pavement structures, and is therefore an important
part of the thesis.



2 Summary of papers

Paper III: Surface waves in inversely dispersive media

The Lamb wave approximation at high frequencies is used in both Paper I and II. With
this approach it is assumed that the top layer or concrete support can be approximated
with a free plate. In reality, the top layer in a pavement structure is in contact with the
underlying compacted granular material (base). The influence on the theoretical
dispersion curves from this lower velocity material is investigated in this paper. The
discrepancy between dispersion curves for a free plate and a plate resting on a lower
velocity half-space is theoretically quantified. It is concluded that the error involved in
the Lamb wave approximation is less than 10% in the high frequency range. In this paper
it is also emphasized that dispersion curves in this type of layering must be calculated in
the complex wave number domain. In this layer setting, where the seismic velocity
decreases with depth, energy is radiating down towards the lower velocity half-space in
proportion to the imaginary part of the wave number. The excitability for each point on
the dispersion curves is also calculated. It is shown that both the attenuation due to
leakage and the excitability are critical parameters for a correct understanding of wave
propagation in this type of layer model. Mode shapes are included in the study to
visualize displacements inside the medium. Results of the study show that for inversely
dispersive media the Rayleigh wave assumption is not valid, and other types of interface
waves and leaky Lamb waves contribute to most of the wavefield.

Paper IV: Guided wave propagation in three-layer pavement structures

In this paper the study from Paper III is extended to include two layers on a half-space
with decreasing velocity with depth. This layer setting is used to represent a more
realistic pavement structure than the plate on a half-space model used in Paper III.
Theoretical dispersion curves are calculated and studied from the same perspective as in
Paper 111, using attenuation due to leakage and excitability. Here it is shown that the
branches of dispersion curves visible in the phase velocity spectrum, observed in Paper I,
can be theoretically explained as different mode branches if both leakage and excitability
are taken into account. Results show that several difficulties that have been reported with
the conventional method can be theoretically explained from these mode branches, i.e.
problems related to unwrapping of the measured phase difference and the lack of
sensitivity to the layer properties of the second embedded layer. It is concluded, that the
observed mode branches at lower frequencies (50-1000 Hz) hold the greatest potential for
a refined evaluation technique of all pavement layer properties.

Paper V: Inversion of surface waves using phase velocity spectra

From the results presented in Paper III and IV it can be concluded that the linearized
matrix techniques traditionally used for the inversion of surface wave data are not
suitable for surface wave testing of pavements. A new approach for the inversion of the
complete phase velocity spectrum based on Simulated Annealing is presented in this
paper. This technique tries to fit a theoretically calculated complete phase velocity
spectrum to the measured replica. The entire procedure of dealing with discrete
dispersion curves and partial derivatives is avoided. Furthermore the interference effect
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from different modes of propagation is taken into account through modal superposition
along the survey line. The viscoelastic properties of the asphalt layer must be properly
accounted for in the inversion. By doing this, the frequency dependent stiffness of the
asphalt layer, the mastercurve, is obtained directly and there is no need for any empirical
relation to get the 30 Hz design modulus value.
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3 Field of research

3 Field of research

This work stretches over several disciplines of science, including wave propagation
theory, inversion theory, pavement engineering, soil mechanics, signal processing, and
computer-based data acquisition. All those topics are described elsewhere and the
purpose of this chapter is to give a concise review of the fundamental principles of this
work. Key topics covered are; wave propagation in layered media, pavement material
stiffness properties, and a literature review of surface wave testing of pavements.

3.1 Seismic wave propagation

In this section the fundamentals of seismic/acoustic wave propagation in solids are
described. Many derivations are lengthy and text books are recommended for a complete
coverage of this theory (Graff, 1975; Ingard, 1988; Cremer and Heckl, 1988; Bedford and
Drumheller, 1994). The wave equation, matrix techniques for wave propagation in
layered media, and modal dispersion curves are the key issues covered.

3.1.1 Body waves and the wave equation

The wave equation for an isotropic infinite elastic solid is based on Newton’s second law,
which states that force is equal to mass times acceleration. The acceleration and force can
be expressed as partial derivatives of displacement (u) and stress (o) respectively.
Equilibrium in an infinitesimal cubic element of density (o) then requires that

2
O'u, 0oy, N ooy, N 00,

= 1
or ox, ox, oOx M
2
p@ 1422 _ 00y, N 00, N 00, @)
ot ox, Ox,  Ox,
o’u, _ 0y, N oo, N 00, 3)

Por " ox, | ox, | ox,

for the three coordinates respectively, where x(x;, x, x3) represents the Cartesian
coordinate system and wu(u;, uy wu3) the corresponding displacements in the three
dimensions, ¢ is time, and oy;, 0;,,...are the different stress components acting on the
cube. These stress components can be rewritten in terms of strain and elastic constants by
using the linear elastic stress-strain relations (Hooke’s law)

o, = AA+2us,, 0,, = AA+2ue,, O3 = AA+2us;, “4)
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Oy, = Hé, Oy = HEy O3 = HEs (5)

where A and p are Lamé’s elastic constants and A=g;;+&,,+&33 is the change in volume of
the element. The strain-displacement relations are given by

_ Ouy _ Ouy _ Ouy

- £, = £y = 6
11 8x1 22 axz 33 6x3 ( )
lz:%+% g, =t O g, = O 7)
X,  OX ox;  Ox, Ox; Ox

By using the stress-strain (Equation 4-5) and the strain-displacement relations (Equation
6-7) the equations of motion (Equation 1-3) can be expressed by using displacements
instead of stresses

o’u, 0 (0Ou Ou, Ou
=(A+pu)=—| L +24+ = |+ 4V 8
P =t s )6xl(8x1 o, GxJ . ®
o’u, Ou, Ou, Ou
=(A+pu)—| —+—2+—= |+ uV'u 9
P or’ ( ,u) ox,\ Ox, Ox, 8)@] et 2

p—=(4 %+%+% + 1V u, (10)
ot ox;\ Ox,  Ox, Ox,

These equations are called the displacement equations of motion (a wave equation) and
express the balance of linear momentum. This is the most general form of the wave
equation, which all elastic oscillations in the interior of a solid must satisfy. Expressed in
vector form, Equation 8-10 is reduced to

2

png;z(/1+,u)V(V-u)+ 1V (11)

where V is the vector operator

V:(a 0 aJ (12)

o, ox, ox,

and V* is the scalar operator

10
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2 2 2
V= 6_2 + 8—2 + 6_2 (13)
ox; Ox; Ox,

Lamé’s constants are usually used in the wave equation but can be replaced by Young’s
modulus (£) and Poisson’s ratio (v) by using

Ev

A=l Ni—) (14
E
ST () 13)

The displacement equation of motion cannot be solved directly. Therefore a form of
solution must be assumed and checked for suitability by differentiation and substitution.
In this case it is assumed that the wavefront is an infinite plane normal to the direction of
propagation and the form of solution can be expressed as

Uy iy tty = A7 4 Betkuirer) (16)

where k£ is the wave number and @ is the angular frequency. The first term represents a
wave propagating in the positive x; direction with amplitude 4 and the second term
represents a wave propagating in the opposite direction with amplitude B. Differentiation
of Equation 16 and substituting into Equation 11 yields two possible solutions
(eigensolutions) for the velocity of wave propagation in an infinite elastic isotropic
medium.

A+ 2u E(1-v)
Vp_a_\/ p _\/p(l+V)(1—2V) (47

_p_ |H_|_E
Vs—ﬂ—\ﬁ 1/MHV) (18)

The first solution (Equation 17) represents the rotational free part of the wavefield,
longitudinal also called compression waves (P-waves). These waves are body waves
traveling with relatively small particle displacements parallel to the direction of
propagation. The longitudinal wave is the fastest traveling wave, hence it is also called
primary wave or P-wave. Particle motion of the P-wave is illustrated in Figure 2.

The second solution (Equation 18) represents the divergence free part of the wavefield,
shear waves also called transverse waves (S-waves). Shear waves propagate only by
shear strain in a direction perpendicular to the direction of propagation. In this case the
medium retains its shape rather than volume compared to the P-wave. The speed Vs is
given by Equation 18 independently of boundary conditions, i.e. half-space, beam, or

11
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plate. This is because there is no change in volume of an element during wave
propagation. Since the shear wave is slower and therefore appears after the compression
wave it is called secondary wave or S-wave. The corresponding particle motion of the S-
wave is illustrated in Figure 2.

P-wave -

Figure 2. Characteristic motion of body wave propagation, compression wave (P-wave), and shear
wave (S-wave), from Shearer (1999).

P- and S-waves are the two fundamental types of waves traveling in an infinite medium.
Depending on boundary conditions other types of wave propagation can also develop.
Pure P- and S-waves are called body waves or bulk waves. Equation 17 and 18 are often
used in material characterization to obtain the elastic constants £ and v from measured or
evaluated seismic velocities and the bulk density of the material. However these
equations are only valid for plane waves inside a medium that is much larger than the
oscillating wavelength. It should be pointed out that in most civil engineering
applications appropriate boundary conditions must be taken into account. For example
the velocity (speed) of P-wave propagation along a free plate is slightly reduced because
of the free boundaries in one dimension. The corresponding quasi-longitudinal wave
speed (Vp piae) 1s slower than Vp in an infinite medium and related to the E, p, and v
constants by

v, =a., = (19)

P plate late 2
p p p 1 —y

3.1.2 Field equations for guided waves in layered media

In this study seismic measurements are conducted on the surface of pavement structures.
This implies a quite different situation than the infinite homogeneous medium described
above. The free surface and the layering of the pavement structure generate dispersive
guided waves and pure P- and S-waves cannot be directly measured from the surface.
However, wave propagation in multilayered media with a free surface can be predicted

12
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based on the superposition of pure P- and S-waves within each layer and the appropriate
boundary conditions between layers. This theory was first presented by Thomson (1950)
and Haskell (1953). Since then a large number of publications have been devoted to
matrix techniques for modeling guided waves in multilayered media (Lowe, 1995).
Applications of this theory ranges from ultrasonic testing of thin films and coatings
(Kuttruff, 1991; Lee and Cheng, 2001) to global seismology (Shearer, 1999). The final
equations necessary to predict wave propagation in layered media using the global matrix
method (Knopoff, 1964) are given within the papers of this thesis. This section gives
some additional background and theory on the derivation of the matrix equations. The
approach taken here follows from the paper by Lowe (1995). Other recommended
publications on matrix techniques are; Kausel and Roesset (1981), Buchen and Ben-
Hador (1996), and Gucunski and Maher (2000).

The P- and S-waves described in the previous section are independent and the total
displacement field can be divided into one P- and one S-wave component. In vector form
this is done by using Helmholtz method where the scalar function ¢ represents the
irrotational part of the wavefield (P-waves) and the vector function y represents the
divergence free part (S-waves). P-waves or longitudinal waves are here represented with
index L and shear waves with index S. The body wave velocities Vp» and Vg are given by
o and p respectively, which follows the notation used in the matrix equations in the
papers of this thesis.

¢ — A(L)ei(k.x—(ut) (20)
and
|‘I’| — A(S)ei(k-x—wt) (21)

where 4;) and Ag) are the P- and S-wave amplitudes respectively. In this vector
formulation k is the wave number vector, which is in the direction of propagation. The
phase velocity (V) is given from

y =2 (22)
The displacement fields (Equation 16) can now be expressed as

u,=Ve (23)
U(S) =Vx ' (24)

where x is the vector cross product. Before proceeding with the matrix equations the
model is restricted to the plane of each plate or layer (x;=0 and u;=0). It is also assumed
that the wavelength is much smaller than the width in the x; direction so that the plane
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strain assumption is valid. Each layer is thus defined in the x; and x, direction and the
particle motion is described in this plane only, see Figure 3. Wave propagation in
multilayered media can now be predicted by superposing P- and S-waves in each layer
and by using Snell’s law for the interaction of waves between layers. Waves above and
below the interface must share the same frequency (w) and wave number k; in the x;
direction. The k; component of the wave number is the projection of the body waves
along the layer interface (or horizontal surface) and determines V), in the x; direction.
Consequently all field equations describing wave motion anywhere in the layer model
contain the factor

F — ei(k]xlfa)t) (25)
which is an invariant of the system. Using Snell’s law the k, component of partial P- and

S-waves traveling in positive (+) and negative (-) x, direction can be expressed with k;
using

kZ(Li) =% ? —k (26)
o
kZ(Si) =% F —k; (27)

Positive directions of x; and x, are shown in Figure 3 along with the partial waves in a
four layer model.

— X
Layer 1 semi infinite half space S-N ]N S-/ L/
Interface 1 —
T
Layer 2 discrete layer S-N IN S—/ L/
Interface 2 —
iy

Layer 3 discrete layer S-N IN S—/ L/
SN TN, s

Interface 3 —

Layer 4 semi infinite half space

Figure 3. Schematic illustration of the layered model used in the global matrix approach, after Lowe
(1995). In surface wave applications the top half-space is modelled as vacuum to represent the free
surface.

14



3 Field of research

The total displacements and stresses in a layer can be calculated by superposing these
partial bulk waves. Since we are only dealing with wave propagation in the x; and x;
direction it is sufficient to derive expressions for the displacements #; and u,, and the
stress components o3, and o7, (normal and shear stress). By using Equations 20-27 these
components can be expressed using only the k; component of the wave number. For
longitudinal waves propagating up (-) and down (+) these expressions are given by

_ el i 28)
=t/ k) Ay Fee ) (29)

= (0" — 28K hpA o Fele ) e (30)
o =250 1o — k2) Pipd,, et 1] e (31)

and for shear waves

u =01~ k) g Fetet ) (32)
t, =~k Ay, Fe 7 (33)
=2k (02 - i) Pipd g, e ) (34)
= (0" =287 Ypa g e 7 (35)

The summation of the contribution from the four partial waves for each displacement and
stress component can be written in matrix form as

u, kg, ki/g, Cy8y ~Cylgy Ay
w || Cu8a -C./8, —kg, ~klgs || A (36)
Oy ipBg, ipB/ g, - Zipklﬂzcﬂgﬁ 2ipk1,6’2Cﬂ 185 || Aiss)
o, 2ipk f°C g, —2ipkp’C,lg, ipBg ,; ipB/g, As

where the common factor F has been excluded and the following substitutions have been
made

C, =0/’ -i)" (37)
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C,=(w/p-k2)" (38)
g, =€l (39)
g, =eltmiil (40)
B=a’-2p8% (41

Equation 34 represents the field matrix (D;) describing the relationship between the
partial wave amplitudes, displacements, and stresses anywhere in a layer ().
Displacement and stresses along the upper and lower interface of each layer can now be
expressed by setting x, equal to zero or the layer thickness depending on which interface
is described. The resulting interface matrices Dj and Dy, describe the displacements and
stresses at the interface as a function of the partial wave amplitudes (4) from above
(index ?) or below (index b) the interface. The thickness (d) in the x, direction of each
layer is entered as x, into the equations and is zero for the half-space matrices. The
interface matrices are slightly simplified by redefining the origin of the bulk waves in
each layer to be at their entry to the layer instead of the top of the layer (Lowe, 1995).
The interface matrices can then be written as

k, kg, Cﬂ —L 585
c -C -k -
[Dit]: e . o8a ’ 1 i . 1;gﬁ (42)
ipB ipBg,, =2ipk,f°Cy  2ipk °Cyg,
2ipk,°C, =2ipk,f°C,g, ipB ipBg ,
kg, k, Cﬂgﬁ _Cﬁ
C -C - -k
D,]=| o s e (43)
ipBg, ipB =2ipk,f°Cpg, 2ipkpC,
2ipk,p*C,g, —2ipkp’C, ipBg ipB

By satisfying the boundary conditions at each layer interface, multilayered media can be
modeled by assembling interface matrices from each layer into one global matrix (S),
describing the complete layer model. For a layer model with four layers as in Figure 3 the
system matrix becomes:

D;b - D2t
S= D2b D3t (44)
D3b - DL
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Each row in S represents each interface and each column corresponds to each layer
including the two half-spaces. The incoming waves in the half-spaces are defined to be
zero, according to the condition for a modal solution that the system is unforced. These
waves are thus identified as knowns and therefore the half-space matrices are only four-
by-two matrices containing only the outgoing waves. The (-) index on Dj, above
represents the outgoing (up) waves in the top half-space (columns two and four in D)
and the (+) index on Dy represents outgoing (down) waves in the bottom half-space
(columns one and three in Dy). In surface wave applications the top surface is usually
free. This can be taken into account by some modifications to the D matrix. However, the
exact same result can be obtained much more easily, simply by setting the bulk wave
velocities, o and S, in the top layer to arbitrary nonzero values and the bulk density to
zero (Lowe, 1995). In this way the same matrices can be used for both vacuum and solid
half-spaces.

Modal solutions predict the unforced vibrations of the system, i.e. modal dispersion
curves. A dispersion curve defines the phase velocities as a function of frequency at
which waves can propagate along the x; direction. For a given set of layer properties x,
(through thickness), «, £, and p modal solutions can be found at certain combinations of
® and k; which satisfies all equations in the field matrix simultaneously, i.e. when the
determinant of S is zero. Further description on this procedure can be found in Paper III
and IV of this thesis. Response solutions at a given frequency and wave number can be
obtained with the same matrix formulation. One of the amplitudes is then assigned a unit
amplitude and resulting displacements or stresses can be calculated by inverting the field
matrix.

3.1.3 Guided waves and dispersion curves

In an infinite, homogeneous, and isotropic medium only body waves exist. However, in
layered media other wave types can be generated. These waves are called guided waves
and are formed by the interaction of P- and S-waves at the interface between layers.
Therefore guided waves carry information on the structural properties (elastic constants
and boundary conditions) of the medium. Guided waves propagating along a free surface
are called surface waves (Telford et al., 1990). The phase velocity of horizontally
propagating guided waves in layered media is frequency dependent, i.e. dispersive. The
relation between frequency and phase velocity is defined by a dispersion curve.

Dispersion curves play a central role in this thesis. The presented method is based on
measurements of dispersion properties of unknown systems (pavements) from which a
corresponding layer model is evaluated. This section is dedicated to explain more about
dispersion of guided waves and dispersion curves.

Rayleigh waves represent a special type of guided wave propagating along the surface of
a homogenous half-space (Rayleigh, 1885). Rayleigh waves are generated from
reflections and mode conversions of body waves at a free surface. The proportions of the
partial wave amplitudes are such that both the shear and normal stress cancel out at the
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surface satisfying the free boundary condition. At the surface, the particle motion is
elliptical and retrograde with respect to the direction of propagation (Telford et al., 1990).
The amplitude of the motion decreases exponentially with depth below the surface, see
Figure 4.

Rayleigh wave e =

Figure 4. Characteristic motion of Rayleigh wave propagation, from Shearer (1999)

The Rayleigh wave velocity (V) is slightly slower than the shear wave velocity. The
exact ratio between Vs and Vi (s=Vg/Vx) is dependent on the ratio between Vs and Vp
(n=Vs/Vp), i.e., Poisson’s ratio. All velocities must obey the Rayleigh dispersion relation

—4s7 s =t s —1+(1-257f =0 (45)

Lord Rayleigh (Rayleigh, 1885) found a solution to this expression that now describes the
Rayleigh wave velocity. By studying Equation 45 it can be found that V% is only slightly
slower than Vg and in practice V' can be approximated with Equation (46) (Nazarian et
al., 1999)

Ve=V,/(1.13-0.16v) (46)

Approximately 67% of the induced energy from an impulse source on a homogenous
half-space propagates as Rayleigh waves (Richart et al., 1970). Therefore Rayleigh waves
show larger amplitudes than the body waves on the surface. Because of geometrical
damping, the amplitude of the Rayleigh wave decays with the square root of the distance
from the source (Richart et al., 1970). Figure 5 illustrates the particle motion of Rayleigh
waves in comparison to P- and S-waves.
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Figure 5. Distribution of seismic waves from a circular footing on a homogeneous, isotropic, elastic
half-space. The particle motion is visualised at a distance of approximately 2.5 wavelengths from the
source. The different wave types are drawn in proportion to the velocity of each wave, from Richard
et al. (1970).

A Rayleigh type of wave travels through a zone that is approximately one wavelength
deep (Graff, 1975). Material properties of this zone affect the velocity of the wave
propagation. Long  wavelengths/low  frequencies penetrate deeper.  Short
wavelengths/high frequencies penetrate a shallow volume close to the surface. Therefore,
if the medium is layered with different properties at different depths, different
wavelengths (or frequencies) will propagate with a different phase velocity.

An example is used to illustrate dispersion of surface waves in a layered medium. Layer
model A represents a three-layer model with a free surface above and a soild half-space
below one 0.2 m thick discrete layer. Material properties and boundary conditions for this
system are shown in Figure 6.

19



3 Field of research

§ "«
X

2

Layer 1: vacuum

Boundary condition: zero stresses at the interface
Layer 2: discrete layer (3,=800 m/s, v,=0.35, p,=2000 kg/m?, d=0.2 m)

Interface 1 —

Boundary condition: continuity of displacements and stresses over the interface
Interface 2 —

Layer 3: semi infinite half space($;=1000 m/s, v,=0.35, p;=2000 kg/m?>)

Boundary condition: Incoming waves (-) must be zero

Figure 6. Example layer model A used to illustrate dispersion of surface waves.

Following the global matrix method explained in the previous section this system can be
described with the system matrix S

D, -D
S:|: 16 2t +:| (47)
D2b D3I

where each row represents each interface and each column represents each layer as
described in section 3.1.2. The fundamental mode dispersion curve has been calculated
by searching for V), at different frequencies where the determinant of S changes sign, i.e.
is close to zero. The resulting roots (¥, and f'pairs) can also be plotted as wavelength (1)
versus phase velocity by using

A=V, I f (48)

Figure 7a shows the shear wave velocity as a function of depth for the example layer
model A. The corresponding dispersion curve is plotted in Figure 7b. At short
wavelengths the phase velocity approaches the Rayleigh wave velocity of the low
velocity layer close to the surface (Vz=745 m/s) and at longer wavelengths the phase
velocity approaches the Rayleigh wave velocity of the lower half-space (V=931 m/s).
Two wavelengths 4,=0.19 m and 4,=0.88 m have been marked as [1] and [2] in Figure
7b. The corresponding vertical displacement component of these two wavelengths has
been calculated in Figure 7c. Here it can be seen that the wave motion of the shorter
wavelength [1] is concentrated to the shallow low velocity layer and thus mostly affected
by the properties of this layer. The longer wavelength [2] penetrates deeper into the
higher velocity half-space and the phase velocity is dependent on the material properties
of both layers.
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Figure 7. (a) Example layer model showing Vg as a function of depth. (b) shows the corresponding
fundamental mode dispersion curve and (c) shows the vertical component of wave motion at two
different wavelengths labelled [1] and [2].

For more complicated layer settings it is usually more difficult to directly compare the
dispersion curve with the layer model as done in Figure 7 above. In general, dispersion
properties of a layered system becomes more complicated when there are large velocity
contrasts between layers and/or a decreasing shear wave velocity with depth.

Layer model B is used to show that dispersion of guided waves can also arise from the
geometry of the medium. Figure 8 shows a layer model representing a free plate in
vacuum. In this case surface waves can develop at both the upper and lower surface
forming guided waves where the whole plate is bending. These waves were first studied
by Lamb (1917) who found that there are two different types of waves that can propagate
in a plate, one symmetrical (S) (also called longitudinal or extensional), and one anti-
symmetrical (A) (also called flexural or bending) type of wave.
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Layer 1: vacuum

Boundary condition: zero stresses at the interface
Layer 2: discrete layer (3,=800 m/s, v,=0.35, p,=2000 kg/m?, d=0.2 m)

Interface 1 —

Interface 2 —

Layer 3: vacuum

Boundary condition: zero stresses at the interface

Figure 8. Example layer model B used to illustrate dispersion of guided waves in a free plate.

Fundamental mode Lamb wave dispersion curves from layer model B are plotted in
Figure 9. In this example there is no variation in material properties within the plate and
the dispersion mechanism is quite different from the surface waves studied in example A
above. In this case it is the ratio between wavelength and thickness that makes the phase
velocity vary with frequency. The layer is bending as a whole, which is illustrated with
mode shapes embedded in Figure 9. At high frequencies (short wavelengths) both the A0
and SO dispersion curve approaches the Rayleigh wave velocity of the plate. Lamb type
of waves play a fundamental part in wave propagation in pavement structures and is
further studied within the papers of the thesis.
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Figure 9. Fundamental mode anti-symmetric (A0) and symmetric (S0) Lamb wave dispersion curves
calculated from example layer model B.

Dispersion curves from example layer model A and B have been shown to illustrate the
dispersion mechanism in simple systems. It has been shown that dispersion curves of a
layered medium are dependent on both the geometry and material properties of the
system. These characteristics make guided waves suitable for material characterization of
unknown layered systems. In fact, guided waves can be used to measure material
properties of embedded layers and areas of structures that are difficult or impossible to
access with conventional techniques. For example, buried pipes (Long et al., 2003), thin
films and coatings (Lee and Cheng, 2001), and material properties of embedded
pavement layers. However, it should be pointed out that dispersion curves of guided
waves can become quite complicated in many systems and are rarely as easily described
as in the examples above. For example multiple modes of guided waves are often excited
and it is not always easy to identify and separate these modes.

Higher modes of propagation play an essential part in the work presented in this thesis.
As described earlier, only two modes of wave propagation are possible in an infinite
medium, i.e., the P- and S-wave. However, the presence of boundaries and/or layers of
different stiffness properties allows for other modes of propagation as exemplified in
example A and B. For simplicity only the two fundamental mode dispersion curves (A0
and S0) were presented in example B. However, at a fixed frequency multiple modes can
exist, all satisfying the boundary conditions for guided wave propagation. The mode with
the lowest phase velocity represents the fundamental mode of propagation. Successively
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higher modes propagate with higher phase velocities, i.e., longer wavelengths. Their
different number of nodal plains in the thickness direction characterizes higher modes of
propagation. The real part of the vertical displacement components of symmetrical Lamb
waves (S0-S3) have been plotted in Figure 10. The layer model in example B has been
used to calculate the displacement at different depths (mode shape) in the plate. The
number of nodal points (zero displacement) increases with increasing mode number.

Norm. Displ. X, Norm. Displ. X, Norm. Displ. X, Norm. Displ. X,
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Figure 10. Vertical displacement component (real part) of the fundamental mode (S0) and successive
higher modes (S1-S3) of symmetric Lamb waves.

Multiple modes of guided waves can increase the sensitivity of guided wave techniques.
All steps from field measurements to evaluation of layer properties can benefit from a
good understanding and thorough study on the possible modes that may be excited in
each application. Consequently, it is an important part of the development of each new
guided wave technique to first study the nature of wave propagation in each specific case
(Lowe and Cawley, 1995a; 1995b). Paper III and IV of this thesis are devoted to the
theory of guided waves in pavement structures.

3.1.4 Wave propagation in pavement materials

In the theory given above, the wave propagation medium or layer has been modeled as a
homogenous continuum. However, it is worth mentioning that in reality pavement
materials are particulate materials built up by small particles, gas, and fluid. In concrete
and asphalt materials, particles are bonded together with cement or bitumen. Under
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operational loads, the state of the particles (orientation and contact) remain fixed and
therefore the stiffness of these materials are not dependent on the state of stress within the
material. In this sense unbound materials (soils) are more com